- · 《临床心电学杂志》投稿[01/26]
- · 《临床心电学杂志》期刊[01/26]
- · 临床心电学杂志版面费是[01/26]
临床心电学论文检测(动态心电图检查对评价心(3)
作者:网站采编关键词:
摘要:设置GoogleNet网络的训练参数 options = trainingOptions('sgdm',... 'MiniBatchSize',15,... 'MaxEpochs',20,... 'InitialLearnRate',1e-4,... 'ValidationData',imgsValidation,... 'ValidationFrequency
设置GoogleNet网络的训练参数
options = trainingOptions('sgdm',... 'MiniBatchSize',15,... 'MaxEpochs',20,... 'InitialLearnRate',1e-4,... 'ValidationData',imgsValidation,... 'ValidationFrequency',10,... 'Verbose',false,... 'ExecutionEnvironment','gpu',... 'Plots','training-progress');
开始训练
trainedGN = trainNetwork(imgsTrain,lgraph_2,options);
进行图像样本分类
[YPred,probs] = classify(trainedGN,imgsValidation); accuracy = mean(YPred==imgsValidation.Labels); display(['GoogLeNet Accuracy: ',num2str(accuracy)])
GoogLeNet Accuracy: 0.9
看一下各类别的分类指标
%"normal" 类别分类指标 RecallNormal = Matrice_confusione.NormalizedValues(5,5)/sum(Matrice_confusione.NormalizedValues(5,:)); PrecisionNormal = Matrice_confusione.NormalizedValues(5,5)/sum(Matrice_confusione.NormalizedValues(:,5)); F1Normal = harmmean([RecallNormal PrecisionNormal]); fprintf('RecallNormal = %2.3f\nPrecisionNormal = %2.3f\nF1Normal = %2.3f\n',100*RecallNormal,100*PrecisionNormal,100*F1Normal); %"AR"类别分类指标 RecallAR = Matrice_confusione.NormalizedValues(1,1)/sum(Matrice_confusione.NormalizedValues(1,:)); PrecisionAR = Matrice_confusione.NormalizedValues(1,1)/sum(Matrice_confusione.NormalizedValues(:,1)); F1AR = harmmean([RecallAR PrecisionAR]); fprintf('RecallAR = %2.3f\nPrecisionAR = %2.3f\nF1AR = %2.3f\n',100*RecallAR,100*PrecisionAR,100*F1AR); % "AS"类别分类指标 RecallAS = Matrice_confusione.NormalizedValues(2,2)/sum(Matrice_confusione.NormalizedValues(2,:)); PrecisionAS = Matrice_confusione.NormalizedValues(2,2)/sum(Matrice_confusione.NormalizedValues(:,2)); F1AS = harmmean([RecallAS PrecisionAS]); fprintf('RecallAS = %2.3f\nPrecisionAS = %2.3f\nF1AS = %2.3f\n',100*RecallAS,100*PrecisionAS,100*F1AS); %"MR"类别分类指标 RecallMR = Matrice_confusione.NormalizedValues(3,3)/sum(Matrice_confusione.NormalizedValues(3,:)); PrecisionMR = Matrice_confusione.NormalizedValues(3,3)/sum(Matrice_confusione.NormalizedValues(:,3)); F1MR = harmmean([RecallMR PrecisionMR]); fprintf('RecallMR = %2.3f\nPrecisionMR = %2.3f\nF1MR = %2.3f\n',100*RecallMR,100*PrecisionMR,100*F1MR); %"MS"类别分类指标 RecallMS = Matrice_confusione.NormalizedValues(4,4)/sum(Matrice_confusione.NormalizedValues(4,:)); PrecisionMS = Matrice_confusione.NormalizedValues(4,4)/sum(Matrice_confusione.NormalizedValues(:,4)); F1MS = harmmean([RecallMS PrecisionMS]); fprintf('RecallMS = %2.3f\nPrecisionMS = %2.3f\nF1MS = %2.3f\n',100*RecallMS,100*PrecisionMS,100*F1MS);
RecallNormal = 100.000 PrecisionNormal = 100.000 F1Normal = 100.000 RecallAR = 100.000 PrecisionAR = 75.000 F1AR = 85.714 RecallAS = 83.333 PrecisionAS = 100.000 F1AS = 90.909 RecallMR = 80.000 PrecisionMR = 100.000 F1MR = 88.889 RecallMS = 83.333 PrecisionMS = 83.333 F1MS = 83.333
由于小样本原因,准确率不是很高。重点来了,更重要的是看看如何进行改进
改进方向:信号前处理
1.可以使用合适的信号降噪方法,移不变小波去噪方法对于PCG,ECG等信号来说还是不错的
基于Cycle Spinning的移不变小波去噪 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/539089086
2.根据PCG信号的波形,可以自适应的构造更合适的小波
利用机器学习模型设计正交小波滤波器 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/537254014
为连续小波变换CWT构造新小波 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/534682868
3.使用时频谱图更加集中的同步压缩变换
同步压缩变换初探 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/543569766
高阶同步压缩变换--占坑 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/544716722
在网络选取方面
GoogLeNet相对于本文样本来说太大了,同时我并不推荐迁移学习和样本生成方法,不要问我为什么
基于小波时间散射网络的ECG 信号分类 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/539001673
基于小波散射算法的空气压缩机异常噪声诊断 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/531077421
码字不易,且行且珍惜
现在在县医院当个医生以后有前途吗?
现在每一个学医的都想去医院上班,毕竟刚出校园,两眼一抹黑,都不知道往哪里走?
现在医院也不好进了,很多地方都饱和了,县级医院都开始招聘研究生学历了,我估计题主的可能会有这方面的问题,好的三甲不好进,只能退而求其次经县医院,但又迷茫,不知要不要去,比较只是人生参加工作的第一个选择,正常来说,去了一下医院,也很少有马上跳槽的,而人都有感情的,你在一个地方待久了,就会不想动了。别想着我现在这混一下,等后面再来跳,一等就是半辈子或者一辈子。
所以还是好好选择的。
文章来源:《临床心电学杂志》 网址: http://www.lcxdxzz.cn/zonghexinwen/2022/1212/1766.html